
J .  Fluid Mech. (1990), vol. 216, p p .  193-212 
Printed in Great Britain 

193 

Sound generation by a supersonic aerofoil cutting 
through a steady jet flow 

By Y. P. GUO 
St John’s College, Cambridge CB2 lTP, UK 

(Received 14 June 1989) 

This paper examines the sound generation process when a supersonic aerofoil cuts 
through a steady jet flow. It is shown that the principal sound is generated by the 
leading edge of the aerofoil when i t  interacts with the streaming jet. To the leading 
order in terms of the jet velocity, no trailing-edge sound is generated. This is not the 
result of the cancellation of a trailing-edge sound by that from vortex shedding 
through the imposition of the Kutta condition. Instead, the null acoustic radiation 
from the trailing edge is entirely because, to the leading order, there is no interaction 
between the trailing edge and the jet. The effect of the trailing edge is to diffract 
sound waves generated by the leading edge. It is shown that the diffracted field (as 
well 8s the incident field) is regular at the trailing edge and the issue of satisfying the 
Kutta condition does not arise during the diffraction process. Thus, there is no extra 
vortex shedding from the trailing edge owing to its interaction with the flow, apart 
from those resulting from the discontinuity across the aerofoil, generated by the 
flow-leading edge interaction. This is in sharp contrast to the case of subsonic 
aerofoils where the removal of the singularity in the diffracted field a t  the trailing 
edge through the imposition of the Kutta condition results in vortex shedding from 
the sharp edge and energy exchange between the sound field and the vortical wake. 

1. Introduction 
I n  a recent paper (Ffowcs Williams & Guo 1988), we examined the sound generated 

from the interruption of a steady jet flow by a supersonically moving aerofoil, to 
model the noise from the interactions of a propeller blade with vortex flows shed from 
other blades in a high-speed multistage contrarotating propeller system where the 
vortex core flows have velocity defects from the mean convecting flow. In that study, 
the supersonic aerofoil was assumed to be semi-infinite, on the grounds that the 
sound of the leading edge would not be overtaken by that, if there is any, from the 
trailing edge of a propeller blade of finite chord in the most noisy Mach wave 
direction, so that the two edges can be treated separately as the leading and trailing 
edge of two semi-infinite aerofoils. Though this model reveals the basic features of the 
sound from the flow-leading edge interaction, it is of interest to see whether the 
trailing edge can cause any appreciable acoustic radiation and whether the sound 
from the leading edge is the dominant component. Also, it is important to examine 
the way by which the trailing edge diffracts the sound waves from the leading edge 
because the diffraction may alter the sound energy radiated to infinity. The case of 
sound diffraction by a subsonic trailing edge is a typical example where acoustic 
energy is converted into vortical energy at the edge through vortex shedding (e.g. 
Howe 1980; Crighton 1981 ; Rienstra 1981). To bring out the effects of the supersonic 
trailing edge on the sound radiation process, we consider in this paper the sound 
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generated when a supersonically moving aerofoil of finite chord cuts through a 
steady jet flow. In  doing so, we find that the supersonic trailing edge plays a quite 
different role from that of a subsonic one. 

We choose to  work with the canonical model of a steady jet because i t  is simple 
enough to be analysed exactly, but yet contains the essential features of the complete 
vortex flow-aerofoil interaction problem. For efficient supersonic aerofoils working 
a t  low angles of incidence and conforming with linearized inviscid supersonic 
aerodynamics, the problem of sound generation can be formulated in a very simple 
form. The sound can be conveniently expressed, with nonlinear quadrupole sources 
neglected, in terms of surface pressure fluctuations on the aerofoil (Ffowcs Williams 
& Hawkings 1969), which, in the case of supersonic aerofoils, can be easily 
determined by a semi-infinite aerofoil model. This is because disturbances produced 
by the trailing edge are all confined to the region behind it and pressures on the 
aerofoil surface are all contributions from the leading edge alone, a remarkable 
feature of supersonic problems that has in the past been widely utilized in studies of 
unsteady loading on supersonic wings (e.g. Miles 1959). 

The dominant source of acoustic radiation is identified to  be the leading edge of the 
aerofoil, which interrupts the streaming jet, imposing a sudden change of boundary 
constraint on the jet flow which results in the radiation of compressive waves. These 
waves propagate to the far field as the principal sound in the form of a pressure pulse 
with a sharp peak produced when the leading edge is near the centre of the jet flow 
where the interaction is strongest. This principal sound has characteristics similar to 
that produced by a semi-infinite aerofoil (Ffowcs Williams & Guo 1988), but now the 
primary pulse is followed by a secondary pulse of opposite sign which has much 
smaller amplitude and a much longer duration than the primary pulse. This 
secondary pulse is due to the diffraction, a t  the trailing edge, of the sound waves 
generated by the flow-leading edge interaction. 

The diffracted field produced by the supersonic trailing edge has distinctly 
different features from that in the case of subsonic aerofoils, where (Amiet 1 9 8 6 ~ .  b )  
the diffracted field is a single peaked pulse, because only one group of waves that 
travel in the direction opposite to the aerofoil motion is diffracted by the subsonic 
trailing edge, and the diffraction has a long tail. The far-field pressure fluctuations 
return to zero as time tends to infinity, since sound waves travel faster than the 
subsonic aerofoil so that there are an infinite number of multiple diffractions between 
the leading and the trailing edge of the aerofoil. For supersonic aerofoils, the trailing 
edge moves faster than sound so that it diffracts not only the waves travelling 
opposite to  the aerofoil motion but also those that propagate in the same direction 
as the aerofoil, and thus produces two peaks in the far-field pressure. The supersonic 
aerofoil moves faster than the disturbances produced by it so that it overtakes all the 
waves within a finite time. After this, there is no more interaction between the 
aerofoil and the flow field and the unsteady loading on the aerofoil returns to zero ; 
the far-field sound pressure pulse is consequently of finite duration. 

A striking feature of the diffraction by a supersonic trailing edge is that the 
diffracted field, as well as the incident. field from the leading edge, is always regular 
at the trailing edge owing to the impossibility of the diffracted waves travelling 
outside the Mach cone emanating from the trailing edge. This is in sharp contrast to 
the subsonic case and has significant consequences for energy exchange between the 
acoustic wave field and the vortical wake flow behind the trailing edge. This energy 
conversion in the case of subsonic aerofoils is effected through vortex shedding, 
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resulting from imposing the Kutta condition a t  the trailing edge (Crighton 1981, 
1985), equivalent to imposing a circular flow around the aerofoil, which removes the 
singularity in the diffracted field a t  the trailing edge predicted by the inviscid theory 
and also determines the unsteady loading on the aerofoil that furnishes the sources 
of acoustic radiation. This is not the case for supersonic aerofoils because the total 
flow in this case is always regular, effected through the finite jump across the wedge 
of the Mach cone. Thus, there is no vorticity production a t  the supersonic trailing 
edge due to its interaction with the sound waves ; vortex shedding from the aerofoil 
in this supersonic case results entirely from the asymmetrical wave form from the 
leading edge. If the incoming waves were symmetrical about the aerofoil plane, the 
diffraction process would not involve any vortex shedding. 

We are also intrigued to find that the trailing edge does not cause any acoustic 
radiation as it moves through the jet ; there is no trace, either in the far field pressure 
fluctuations or in the unsteady lift on the aerofoil, of the instant a t  which the trailing 
edge enters the jet flow. This null acoustic radiation is not due to the cancellation of 
a trailing-edge sound by that from vortices shed from the trailing edge, as suggested 
by Howe (1976, 1988) for certain cases of subsonic aerofoils. Instead, it is because, 
to the leading order in terms of the jet velocity, there is no interaction between the 
trailing edge and the flow, as similarly analysed by Ffowcs Williams & Guo (1988) for 
a semi-infinite trailing edge aerofoil and by Amiet (1988) for subsonic aerofoils. 
Accompanying the generation of the leading-edge sound, a near-field motion is also 
built up, which is, to the leading order, steady and has the characteristics of 
incompressible flows. It is this near field that remains with the jet and offsets its 
velocity to comply with the zero-flow boundary condition through the aerofoil 
surface. Since both the jet and the induced near field are steady with no pressure 
fluctuation across the aerofoil, the boundary condition in the wake behind the 
trailing edge that specified zero pressure jump is satisfied by the flow on its own as 
the trailing edge approaches the jet. Thus, there is no need for the total flow to adjust 
itself again when the trailing edge passes through it and no sound is radiated by the 
passage of the trailing edge. Since there is no interaction between the trailing edge 
and the jet, the trailing edge does not produce any vorticity. The aerofoil leaves a 
vortex sheet behind it as i t  passes through the jet only because its leading edge 
interrupts the streaming jet, resulting in a discontinuity in the tangential velocity 
across the aerofoil. The production of this discontinuity in the supersonic case is 
completely independent of the trailing edge, so that it can be regarded as having no 
effect on the vorticity production. 

2. Formulation 
Consider an infinite-span aerofoil of chord 2b, moving with supersonic speed 

cM(M > 1) in the positive x1 direction, c being the constant speed and M the aerofoil 
Mach number. We choose the Cartesian coordinate system (xl, x2, x3) such that the x3 
axis coincides with the axis of a steady cylindrical flow of radius a and uniform 
velocity u,, in the negative x3 direction (see figure 1) .  This choice of coordinate system 
is entirely for the sake of retaining compatibility with our previous study (Ffowcs 
Williams & Guo 1988) ; if aerofoil-fixed coordinates were chosen, the same analysis 
could be conducted and the same results obtained. The aerofoil moves in the plane 
x3 = 0. A t  time t = 0, the leading edge of the aerofoil reaches the centre of the 
cylindrical flow. We assume that the velocity of the jet flow and the induced 
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%? 
FIGURE 1. The geometry and coordinates of the model problem 

disturbances are of small amplitude so that the use of linear theory is justified. Owing 
to the symmetrical geometry, i t  is sufficient to consider only the region x ,  2 0, in 
which the pressure fluctuations p ( x ,  t )  comply with the wave equation 

Since the aerofoil moves supersonically, the perturbation pressure in the plane 
x ,  = 0, in which the aerofoil moves, is zero everywhere except on the aerofoil surface ; 
i t  vanishes ahead of the aerofoil because no disturbance can travel faster than the 
leading edge that advances supersonically and it is zero behind the aerofoil owing to 
the symmetrical geometry. Thus, if ps (x , , t )  denotes the surface pressure on the 
aerofoil, x,  being the horizontal coordinates (a = 1,2),  the boundary condition on the 
plane x, = 0 can be set as 

where H is the Heaviside step function, equal to one for positive arguments and zero 
for negative arguments, so that the quantity enclosed in the square bracket is equal 
to one on the aerofoil surface and vanishes elsewhere. 

The problem formulated by (2.1) and (2.2) can be solved by taking Fourier 
transformations from the horizontal coordinate x, and time t to the wavenumber k, 
and frequency w according to 

and fi(ka, x3 ,  k,)  = l x a s t p ( x , ,  x, ,  t )  ei(k~s=+roeMt) d2xad t ,  

where the symbol stands for quantities in the wavenumber-frequency space and we 
have denoted the frequency parameter k, = w/&. Applying this to (2.1), the 
solution that satisfies the radiation condition at  x ,  -+ + co is simply 

ma> 2 3 ,  k,) = C(k , ,  k,, k,)  eiyxa, (2.3) 
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where C is to be determined from the boundary condition (2.2) and the function 
y(k,, k,, k,) is defined by 

(sgn(k,)(Wk~-k:-k':)~ when y2 =Wki-k;-k; 2 0, ( 2 . 4 ~ )  

li(k:+ki-Mzk:)l when y2 = M2ki-k:-ki < 0, (2.4b) 

with sgn (k,) denoting the sign of k,. This specification of y ensures that the induced 
disturbances are either outgoing or finite at infinity. 

To determine C(k,, k,, k,), the pressure on the aerofoil surface must be obtained. 
This can be done by noticing that, since the aerofoil moves supersonically, any 
disturbances generated by the trailing edge are always confined to the region behind 
the aerofoil; the pressure fluctuations on the aerofoil are produced by the leading 
edge alone and are unaware of the existence of the trailing edge. Thus, ps(xa,t) is 
identical to  the pressure that would be produced if the aerofoil were semi-infinite. 
This is in fact the technique used to  determine the unsteady wing loading for 
supersonic aerofoils, which has in the past, been thoroughly studied (see, for example, 
Miles 1959). For a semi-infinite aerofoil, the surface pressure on the aerofoil can be 
found in a straightforward way by specifying the boundary condition on the plane 
x3 = 0 in terms of the normal velocity fluctuations, and by either utilizing the 
Kirchhoff theorem, as was done by Ffowcs Williams & Guo (1988), or using the 
method of Fourier transformations. The latter is more convenient for the purpose of 
this paper and is briefly described in the Appendix, in which it is found that 

Y(k1, k,, k,) = 

where po is the constant mean density, J1 denotes the Bessel function of first order 
and h = ((k, + k,)2 + k$. 

On substituting (2.5) into (2.2), taking the Fourier transform and comparing the 
result with (2.3), it follows that C can be determined as 

where y(k:, k,, k;) is given by (2.4) with k, replaced by kh and k, replaced by kT = 
k, + k,- k;. It can be noted that the kh integral in (2.6) is in fact the inverse Fourier 
transform with respect to frequency. As analysed in the Appendix, the integration 
path for this integral should run above all singularities in the integrand and the 
contour should be closed by a semicircle a t  infinity in the lower half complex k; plane, 
on which the contributions to (2.6) vanish. This is required in order to satisfy the 
causality condition that there is no disturbance a t  the observation point x until the 
first generated wave arrives. Since the only singularities are the branch points, 
determined by y(k:, k,, Ich)  = 0, with the branch cut joining them (the reason for this 
choice of the branch cut is given in the Appendix), the integral can be deformed onto 
the branch cut, on which y2(k:, k,, k;) < 0, so that y is given by (2.4b). Thus, we have 

J,(aA) H(kr2 + ki-M2kh2) 1 -e2ib(kh-ko) 
C(kl, k,, k,) = -2ip,u,a- dk;, (2.7) 

h (kT2 + ki -M2kl;L)i k; - k, 

where the factor 2 accounts for the fact that contributions from both sides of the 
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branch cut are equal and the integral is now an ordinary real variable integral with 
the Heaviside function in the integrand setting the bounds of integration. 

With C given by (2.7), the inverse Fourier transform of (2.3) yields 

where, again, the k,  integral, being the inverse Fourier transform with respect to 
frequency, is along a horizontal path in the complex k,  plane that is above all the 
singularities in the integrand, so that the causality condition is satisfied. This 
formulation gives the sound field in terms of the surface pressure fluctuations on the 
aerofoil which, in the case of supersonic aerofoils, are uniquely determined by the 
contributions from the leading edge alone. This is actually the Ffowcs Williams & 
Hawkings (1969) formation of the Lighthill (1952) theory applied to a plane 
boundary, with the nonlinear quadrupole sources neglected, which are of the order 
ui, one order of magnitude smaller than (2.8). 

3. The sound in the far field 
To obtain pressures in the far field, it is convenient to introduce the spherical 

coordinate system (Ixl,B, q5) defined by z1 = 1x1 sin 8 cos q5, z2 = 1x1 sin 8 sin q5 and 
x3 = 1x1 cos8, in terms of which the k, integral in the result (2.8) can be written as 

/kzC(kl, k,, k,) eilxl@(kJd2ka, (3.1) 

where $(ka) stands for the phase function 

$(k,) = y cos B - k, sin 8 cos q5 - k, sin 8 sin q5. 

In the far field 1x1 --f co, the double integral in (3.1) can be evaluated by the method 
of two-dimensional stationary phase (e.g. Jones 1972 ; Lighthill 1978), with the 
leading-order contribution given by 

where La is the values of k, a t  the stationary point determined by the vanishing of 
the gradient V$(kJ, which gives 

I IC", = -Mk,sinOcosq5, 
IC", = -Mk, sin B sin q5. (3.3) 

On substituting (3.2) into (2.8), with G(&, I%,, k,) calculated from (2.7), the sound in 
the far field is found to be 

e-ik 0 7 dk,dkh, (3.4) 

where T is the retarded observation position M(ct - 1x1) and both a and p are positive 
quantities introduced to simplify the expression : 

a = [( 1 - sin2 8 cos2 9) (1 - sin2 8 sin2 @)I$. 

,8 = (1 +M2 sin2 B -  2Msin 8 cos q5):. 
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With fT = f ,  + k, - kh and fa  given by (3.3), it  can be seen that the integrand in 
(3.4) is homogenous in k, and kh, so that it is convenient to replace the kh integral by 
7 through the change of variables q = (kh-k,)/k,, with which the result (3.4) can be 
simplified to  

P ( X ,  t )  = - e-iko'dk,dy, (3.5) 

where p(7) is a function of 7 alone and results from inserting r,~ = (kh - k,)/k, into the 
square root in (3.4) and dividing the result by lkol, that is 

,!A = [( 1 -W) q2 - N ~ ( M -  sin 8 cos $1 -W cost 81;. 

Now, the k,  integral in (3.5) can be performed immediately to give 

where G, is defined by 

the last step of which follows from the formula (6.693) given by Gradshteyn & 
Ryzhik (1980). 

On substituting (3.6) into (3.5), the ?-integral in the first term can be calculated 
immediately with the result - n/M cos 8, because G,(T) is independent of 7. Denoting 
the second term by 

[a2/12- (T+ 2 b ~ ) ~ ] ;  
G, = -y-- d?, (3.7) 

'OS ' q[( 1 -W) q2 - 2Mv(M- sin 8 cos $) -W cos2 81; 

The far-field pressure can be written as 

where G, and G, respectively characterize the effects of the leading and the trailing 
edge, and the integration limits in (3.7) are jointly determined by p2 2 0 and 
up- 1~+2bql 2 0. The solutions of these two inequalities show that G, assumes 
different forms in five regions in the axis of the retarded observation position 7, the 
dividing points of which are given by 

[M-sin8cos$+sgn(j-2.5)A]+cos(jn)a/3, j = 1,2 ,3 ,4 ,  
2bM 

M2-1 
7 .  = - 

where A is defined by A = [ (M sin 8 - cos $)2 + cos2 8 sin2 $I$ and 

2bMA 
r1 < r2 < r3 < r4 if a < 

P(M2- 1 )  ' 

These dividing points show the time sequence of the diffraction process when the 
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trailing edge of the aerofoil interacts with the waves produced by the leading edge. 
From their definitions, it is clear that  r1 and r2 respectively correspond to  the 
instants when the trailing edge enters and leaves the group of waves from the leading 
edge travelling in the direction opposite to the aerofoil motion, and r3 and r4 
correspond to  the instants when it enters and leaves the group travelling in the same 
direction as the aerofoil. For compact vortex flows with a < 2 b M A / p ( W -  l ) ,  the 
interaction between the leading edge and the jet flow ends well before the trailing 
edge encounters the waves generated by that interaction, so that the two groups of 
waves travelling in opposite directions are separated from each other when they are 
diffracted by the trailing edge; the trailing edge diffracts all the waves travelling 
opposite to the aerofoil motion before it catches up with those in the aerofoil motion 
direction (r2 < TJ. On the other hand, for large jet radius with a > 2bMA//?(W - l ) ,  
the two groups of waves have tails that are mixed with each other. Thus, the trailing 
edge enters the group of waves propagating in the aerofoil motion direction before 
it leaves the other group, so that r3 < r2. 

Having determined the integration bounds, (3.7) can be calculated by making use 
of the formulae (3.147) to (3.149) given by Gradshteyn & Ryzhik (1980) with the 
result expressed as a piecewise-smooth function of the retarded observation position 
T = M(ct-  1x1). The solution can be facilitated by introducing the following 
quantities : 7-r1 , .-up n=- , n = n -  

2aP r2-ap’  

and 

- r n-n‘ I 7+ap 
r2-7 n TI +up’ 

, a = -  m = -- 

in terms of which G, can be written as 

T4 d 7 d + co, 
for a Q 2bMA/p(M2- l ) ,  where F and I7 are respectively the elliptic functions of first 
and third kind. For the case of large jet radius with a 2 2bMA//3(M2-- l ) ,  the solution 
can be obtained from the above result by exchanging r2 and r3 and then replacing the 
expression for the region r3 Q T < r2 by 
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FIGURE 2. The far-field sound pressure with alb = 0.1 and 8 = 0. 

Typical far-field pressure waveforms, calculated according to (3.8) for some values 
of the aerofoil Mach number M ,  are plotted in figure 2 as a function of the retarded 
observation position ct - 1x1. The dominant sound is generated in the form of a 
positive pulse when the leading edge interacts with the jet flow. The sharp peak of 
the pulse is located near 7 = 0, indicating that i t  is produced when the leading edge 
is near the centre of the streaming jet where the interaction is strongest. This positive 
pulse has characteristics similar to that produced by a semi-infinite aerofoil ; it 
spreads spherically with decaying amplitude according to l/lxJ, except in the Mach 
wave direction where its amplitude remains constant as the pulse travels away, as 
analysed by Ffowcs Williams &, Guo (1988). The pulse from the flow-leading edge 
interaction is followed by a secondary pulse of negative sign, which has much smaller 
amplitude and a much longer duration. The area under the positive pulse is always 
equal to that under the negative one, which is clear from (3.5), the integration of 
which with respect to r is identically zero. The secondary pulse is switched on a t  
7 = r1 and off a t  7 = r4; it  is the diffracted field produced when the trailing edge 
moves through the waves from the leading edge. 

The pulse due to diffraction has two peaks and a finite duration, which is different 
from that produced by a subsonic aerofoil. For a subsonic aerofoil (e.g. Amiet 1986a, 
b ) ,  the waves in the same direction as the aerofoil motion always move ahead of the 
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aerofoil, so that only the waves travelling in the opposite direction to the aerofoil 
motion are diffracted by the trailing edge, resulting in a single peak in the far-field 
pressure. In the case of supersonic aerofoils, the trailing edge diffracts both groups 
as i t  catches up with them. Since the two diffracted fields are produced separately 
from each other in time, the resultant far-field sound contains two distinct peaks in 
the pressure waveform. In the subsonic case, the secondary pulse has a long tail; the 
pressure returns to zero as r + + CO, because the diffracted field can propagate ahead 
of the trailing edge that produced it. Thus, the trailing edge always moves in an 
unsteady wave field and there are an infinite number of multiple diffractions between 
the trailing and the leading edge, though the strength of the diffraction rapidly 
becomes very weak. On the other hand, a wave from the supersonic leading edge will 
be diffracted by the trailing edge only once because the supersonic aerofoil overtakes 
all the disturbances within a finite time, after which there is no more interaction 
between the aerofoil and the total flow field and the unsteady loading on the aerofoil 
vanishes (see the next section). The pressure in the far field then returns to zero after 
a finite time. 

From the result (3.8), it is clear that the far-field sound contains no trace of the 
interaction between the trailing edge and the streaming jet flow; no sound is 
generated by the trailing edge as it passes through the jet. The null acoustic radiation 
from the trailing edge is not the result of the cancellation of trailing-edge sound by 
that from the vortex shedding process effected by the imposition of the Kutta 
condition a t  the sharp edge, as in some subsonic cases (Howe 1976, 1988). Instead, 
it is entirely due to the fact that, to the leading order in terms of the jet velocity, 
there is no interaction between the flow and the trailing edge. This is similar to the 
situation analysed by Amiet (1988) for subsonic aerofoils and by Ffowcs Williams & 
Guo (1988) for supersonic semi-infinite trailing-edge aerofoils. It can be understood 
by noticing that, as the leading edge penetrates the jet flow, it not only scatters 
acoustic waves but also builds up a near-field motion which is essentially steady and 
with the characteristics of incompressible flows. It is this near-field motion that 
remains with the jet flow and offsets its velocity to satisfy the zero-flow boundary 
condition through the aerofoil surface. Since both the induced near field and the 
streaming jet are steady with no pressure jump across the aerofoil, the boundary 
condition behind the trailing edge that specifies zero pressure jump is automatically 
satisfied by the flow on its own as the trailing edge approaches the jet. Hence, there 
is no need for the flow to change as the trailing edge enters it and no sound is 
radiated. 

Though both the linear theory described above (and that given by Amiet for 
subsonic aerofoils) and the acoustic analogy developed by Howe (1976, 1988) predict 
null acoustic radiation from the trailing edge, the mechanisms involved are quite 
different. Most noticeably, since there is no interaction between the trailing edge and 
the jet flow in linear theory, there is no vorticity production at the trailing edge as 
it moves through the jet, which is essential in Howe’s cancellation mechanism. This 
conclusion is based on linear theory where no unsteady near-field pressure is induced 
by the flow-leading edge interaction. If nonlinear effects were included, there would 
be a trailing-edge radiation ; the flow-leading edge interaction would induce an 
unsteady near-field pressure in the vicinity of the steady jet, which would be 
scattered into sound by the trailing edge as it moves through the jet flow. However, 
as analysed by Amiet (1988) for subsonic aerofoils, the sound from this mechanism 
would be of negligible importance in comparison with that from the leading edge, if 
the same jet were to interact with both the edges. This is because the unsteady 
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pressure fluctuations due to nonlinear effects, which would furnish the strength of the 
trailing-edge noise, should be proportional to the square of the jet velocity, an order 
of magnitude smaller than the dominant sound from the flow-leading edge 
interaction which is characterized by a pressure field in proportion to the jet velocity. 

4. The unsteady loading on the aerofoil 
Owing to the radiation of compressive waves, the aerofoil experiences an unsteady 

lift during the interaction. This lift can be calculated from a semi-infinite aerofoil 
model because the surface pressure on the supersonic aerofoil is determined by the 
leading edge alone (Miles 1959), which assumes the form 

L(t) = 2 r m  rt ps(xa, t) d2x,, 
-m cMt-2b 

where the factor 2 accounts for the contribution from the lower surface of the aerofoil 
and ps(x,, t )  is the surface pressure given by (2.5). On substituting (2.5) into (4.1), the 
x2 integral can be performed trivially as 2m3(k2), which in turn can be utilized to carry 
out the k, integral. The integration with respect to x1 can also be explicitly evaluated 
so that we have 

This result can be rewritten by explicitly specifying the integration limits for the k, 
integral through a Heaviside function, as was done in (2.7). The arguments are 
similar ; the causality condition requires that the integration path for the frequency 
integral should run above all singularities in the integrand, which are two branch 
points joined by a cut along the real k, axis. On forming a closed contour by a 
semicircle a t  infinity in the lower half k, plane, the k, integral can be deformed onto 
the branch cut, on which 

y ( k l ,  0, k,) = i(k:--M2k$, 

so that the lift becomes 

(4.2) 

where the integral is on one side of the cut with contributions from the other side 
taken into account by the factor 2. 

By introducing the change of variables 5 = k,+k,  and y = kJ6, (4.2) becomes 

in which, the [-integral assumes the form 

m 

-2i 1, [sin ([&t) - sin [(&t - 2by)] d6 = - ia[Q,(cMt) - Qc(cMt - 2by)], 
6' 
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with &,(&It) defined by 

(-in, - c o d & t < - a ,  

+a 6 cMt 6 +co. 

On substituting (4.4) into (4.3), it  follows that 

The fitst integral in this result can be calculated immediately with the result n/M and 
the second can be evaluated in a way similar to that used to calculate (3.7). When 
this is done, the unsteady lift can be written as 

Here Qd is a piecewise smooth function of time t ,  given, for the case of small jet radius 
with a < 2bM/(M2- l ) ,  by 

[ - x ,  -aJ d t < t , ,  

M(&t+u-Zb) 7~ 
arcsin 

cMtfa I 
M(&t +a - 2b) + arcsin M(CMt-a-2b) 

cMt-a 
arcsin 

cMt+a 

t, d t d t,, ~~ 

2b 

arcsin 

where f (ql, 7,) is a complicated combination of elementary functions and elliptic 
functions. It can also be expressed in terms of a single integral as 

For the case of large jet radius with a > 2bM(M2 - l) ,  the solution can be obtained by 
simply exchanging t ,  and t3 and then replacing the result in the region t, < t < t, by 

where t, is given by 
a 

+cos(nj)--, j= 1,2,3,4.  
2blc  t .  = 

M+sgn (2.5-j) GM 
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FIGURE 3. The unsteady lift on the aerofoil with alb = 0.1. 

The unsteady lift on the aerofoil is plotted in figures 3 and 4 as a func-ion of time 
t ,  showing the dependence of the lift on the aerofoil Mach number M and the ratio of 
the jet radius a to  the aerofoil semichord b.  The lift is initially zero until the leading 
edge reaches the jet flow a t  time t = -a/&, after which it grows with time 
continuously as the leading edge penetrates the jet flow. The growth ceases a t  a later 
time when the lift reaches a constant value, or when i t  abruptly begins to decay, 
depending on the ratio alb. The gradual initial growth of the lift is due to the finite 
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spatial dimension of the jet flow that is interrupted by. the aerofoil; if the velocity of 
the jet had a delta-function distribution in space, the lift would suddenly grow from 
zero to a constant value at the instant when the leading edge strikes the jet. The 
initial growth is independent of the aerofoil chord but becomes more rapid as the 
aerofoil Mach number increases. At t = 0 when the aerofoil has blocked half the jet 
flow, the lift is the same for any Mach number. 

Figure 3 shows the unsteady lift for the case of compact jet radius (a /b  = 0.1). In 
this case, the interaction between the leading edge and the streaming jet occurs 
before any of the waves generated by that interaction encounters the trailing edge, 
so that the lift reaches the constant value 2 p 0 u O ~ ~ a 2  before it starts to decay. This 
value can be given a physical interpretation ; i t  is the lift that  would be experienced 
by a semi-infinite supersonic aerofoil cutting through a delta-function jet flow of 
strength uo nu2, namely of the same volume flux as the cylindrical jet. This is because, 
for this part of the lift curve, the aerofoil has completely blocked the jet but the 
waves generated by the blockage have not yet reached the trailing edge, the aerofoil 
behaving as if i t  were semi-infinite. In  fact, this constant value is the maximum lift 
an aerofoil of arbitrary Mach number and chord may experience ; varying the Mach 
number does not affect this constant value, unless M is reduced to subsonic values, 
which results in a reduction in the maximum lift (Guo 1989). It can also be noticed 
that this constant value for the lift is the limit case for subsonic aerofoils as the 
aerofoil Mach number approaches unity (Amiet 1986a, b ) .  For our supersonic case, 
there is no Mach-number dependence on the level of this flat portion of the lift curve 
because none of the propagating waves extends outside the region of the aerofoil 
planform until the waves pass the trailing edge ; thus, the motion of the aerofoil has 
no effect on the propagating waves until the trailing edge reaches them. The instant 
a t  which the lift begins to decrease is determined by the time within which the first 
wave generated by the leading edge reaches the trailing edge, that is, t,. If this 
happens after the jet is completely blocked by the aerofoil (tl > a/&), the lift 
reaches its constant maximum. On the other hand, if the first wave generated 
encounters the trailing edge before the leading edge reaches the downstream 
boundary of the jet flow a t  x, = a, which is the case for non-compact jet flows, 
the lift abruptly starts to  decay before reaching the constant value, as shown in 
figure 4. 

5. The field near the trailing edge 
To see whether acoustic energy produced by the flow-leading edge interaction is 

converted into vortical energy at the trailing edge as it moves through and diffracts 
the waves, it is necessary to examine the diffracted field near the trailing edge. 
Energy exchange between sound waves and vortices can occur, in potential theory, 
if the inviscid theory predicts a singular solution a t  the sharp edge and the 
singularity is required to be removed by imposing the Kutta condition, resulting in 
a regular but discontinuous solution which indicates vortex shedding from the 
trailing edge, a well-known phenomenon for subsonic aerofoils (e.g. Crighton 1985 ; 
Howe 1976). This is not the case for supersonic aerofoils because the inviscid solution 
in this case is regular a t  the trailing edge and the Kutta condition that requires finite 
behaviour a t  the sharp edge is automatically satisfied by the diffracted field. This is 
demonstrated in this section. 

Since the waves produced by the leading edge alone are regular everywhere, it is 
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FIGURE 5.  The trailing-edge geometry where 8, is the Mach angle. 

sufficient to consider only the diffracted field due to the leading edge, which, denoted 
by pd(X,t), can be written according to (2.6) and (2.7) as 

x e2Wko-k;) eiyZ, e-i(k,Za+koCMt) d2k dk  dk' 
a 0 0' 

By changing the k, integral from k, to ko+k, and introducing the cylindrical 
coordinates ( r ,  0) based on the trailing-edge geometry with r = [x: + (x, - cMt + 2 l 1 ) ~ ] +  
so that x1 = ~ C O S  0 and x3 = rsin 0 (see figure 5 ) ,  the diffracted field p, (x ,  t )  can be 
rewritten as 

x e2ib(ko-k;) eir[y(k,, ko-kl) sin 8-klCOSe] e-i(k,Z,+k,CMt) d2k dk dk' 
a 0 0 ,  (5.1) 

where A' = (k;+k:)f. The result is cast in this form because the dependence of 
pd(X, t )  on r and 0 is all contained in the k, integral which can be readily evaluated 
in the limit r -+ 0. 

To this end, we note that the path of the k, integral is a horizontal line in the 
complex k, plane below all the singularities in the integrand, of which only the 
branch points determined by y( k,, k, - k,) = 0 are of interest ; the pole at k, = k, - k; 
does not affect the result because its contribution is exactly cancelled by that from 
a pole in the incoming waves from the leading edge, as is clear from the result (2 .6)  
(so that pa actually gives the behaviour of the total pressure fluctuations close to the 
trailing edge). From the definition (2.4), it  can be derived that, as Ik,l+ 00, 

Y2(kl, k2 ,  k, - k,) = M2(ko - kl)2 - k i  - (W- 1) k:, 
which leads to y(k1,k2,~,-kl) - ~ g n ( ~ , - k , ) l k , l ( ~ 2 - l ) ~  - -k1(M2-1)~. (5.2) 

It is then clear that infinity is not a branch point so that the branch cut can be made 
by joining the two branch points given by y(k,, k,, ko-k , )  = 0. In this case, the k, 
integral can be deformed from its original path onto the branch cut by forming a 
closed contour with a semicircle at  infinity in the upper half complex k, plane. The 
contribution from this semicircle vanishes provided that 

Im[y(k,,k2,k,-k,)sin0-k,cos0] > 0 at Ikll+Co, 
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where Im ( z )  stands for the imaginary part of z. With y(k,, k,- k,) given by (5.2) and 
considering that Im (k,) > 0 on the semicircle, this condition leads to 

(M2-i):sinO+cos0 < 0, 15.3) 

which states that the k, integral, and hence the diffracted pressure p d ( x ,  t ) ,  is non- 
zero only within the Mach cone. Denoting the Mach angle by 8, = arcsin (l/M) (see 
figure 5),  the condition (5.3) is equivalent to 

O+O, > R.  

When this condition is satisfied, the k, integral in (5.1) is given by that along the 
branch cut. After some simple algebra, it becomes 

H[k:-IM2(ko-kl)2 - 
2H(O + 8, - x)  I’” e iklrcosesinh{rsin O[k:-M2(k,-k,)2]~}dk,. 

-m k,+k;-k, 

Since the integrand is now evaluated at  finite values of k,, it can be expanded in 
terms of a power series of r .  As the trailing edge is approached ( r+O) ,  the leading- 
order term in the expansion is of order r and is given by 

[k:-@(k,-  k1)2]i 
k, + kh - k, 

H [  k: -W( k, - k,)’] dk, , rI 2r sin 8H(8+ 8, - R )  

which can be readily calculated by standard techniques. On substituting this into 
(5.1), the diffracted pressure p,(x,  t )  can be expressed as 

pd(x,  t )  - r sin OH( 8 + 8, - R )  B(x,, t ) ,  (5.4) 

where 

x H[kz -W(ko - k,)2] e2Wko-k;) e-i(k*%+kocMt) d2ka dk dk‘ 
0 0’ 

The result (5.4) clearly reveals the structure of the diffracted pressure field near the 
trailing edge. It is clear that all the diffracted waves are confined to the region within 
the Mach cone 0 > R-O,, with maximum wave amplitude in the Mach wave 
direction (at the wedge of the Mach cone). This maximum is given by B(x,, t )  in (5.4) 
which is now a function of x2 and t only. The angular dependence of the waves is 
characterized by sin 8 which is different from the case of subsonic aerofoils where the 
diffracted field near the sharp edge is proportional to sin ($0) (e.g. Ffowcs Williams 
& Hall 1970; Crighton 1972; Rienstra 1981). 

A more important difference between (5.4) and the diffraction by a subsonic 
trailing edge is that (5.4) vanishes as the edge is approached; the diffracted field 
varies linearly with r ,  in sharp contrast to the case of subsonic aerofoils, where the 
diffracted field is singular at the edge with an r-i singularity. This regular behaviour 
of the diffracted field near the supersonic trailing edge is similar to that of a finite- 
strength vortex sheet leaving a supersonic trailing edge (Morgan 1974; Cargill 1982) 
where the deformation of the vortex sheet is in proportion to the distance from the 
edge in the vicinity of it. This regular behaviour is significant in that no extra 
vorticity is produced a t  the supersonic trailing edge due to its interaction with the 
compressive waves, as is often the case for subsonic aerofoils; the removal of the 
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singularity a t  a subsonic trailing edge by imposing the Kutta condition results in 
vortex shedding and dissipation of acoustic energy. The total flow is always regular 
at the supersonic trailing edge when it diffracts incoming acoustic waves, because of 
the impossibility of waves travelling outside the Mach cone, an essential feature of 
supersonic flows. This feature results in a jump in the diffracted field from zero to a 
finite value across the wedge of the Mach cone, as characterized by the Heaviside 
function in (5.4). It is this finite jump, similar to a weak shock that smooths out the 
large gradient of the diffracted field a t  the trailing edge, which can only be removed, 
in subsonic flows, by resorting to the imposition of a circulation around the aerofoil, 
namely, the Kutta condition. This circulation makes the flow leave the sharp trailing 
edge tangentially and also determines the lift on the subsonic aerofoil. For supersonic 
aerofoils, the tangential flow a t  the trailing edge is achieved by the compressive 
waves which also determine the unsteady loading on the aerofoil, as demonstrated 
in the previous section. 

6. Discussion and conclusions 
The problem of sound generation by a supersonic aerofoil interacting with a steady 

jet flow is examined in a simple model that allows for exact analytic solutions and 
reveals fundamental features of the interaction process that causes acoustic 
radiation. The dominant mechanism is identified to be the flow-leading edge 
interaction which generates an intense pressure pulse that is heard in the far field as 
the principal sound. The role played by the supersonic trailing edge during the 
interaction process is analysed in detail. It is interesting to find that its effects are 
quite different from those of a subsonic aerofoil. The most striking feature is that 
there is no extra vortex shedding from the trailing edge due to it5 interaction with 
the flow; vortex shedding from the aerofoil in this case is entirely due to the 
discontinuity across the aerofoil generated by the flow-leading edge interaction. This 
can also be understood by considering the rate of change of circulation about a path 
enclosing the aerofoil but not the wake. It is clear that the circulation on such a path 
does not depend on the conditions a t  the trailing edge since the edge does not have 
any upstream influence. Thus, the circulation about the wake, which must be the 
negative of that on the aerofoil, cannot depend on the trailing-edge condition. 

The trailing edge does not cause any acoustic radiation as it moves through the jet 
flow because there is no interaction between them. The steady near field has a 
discontinuity in the tangential velocity across the aerofoil, which results in a vortex 
sheet after the trailing edge has passed the jet, but that vortex shedding is a silent 
process which does not involve any pressure fluctuations. This analysis is based on 
linear theory. If nonlinear effects were included, there would be component of sound 
from the trailing edge ; the flow-leading edge interaction would induce an unsteady 
near-field pressure fluctuation in the vicinity of the steady jet, which would be 
scattered into sound by the trailing edge when it moves through the jet flow. 
However, the sound from this mechanism can be shown to be of negligible 
importance in comparison with that from the leading edge, because the pressure 
fluctuations due to nonlinear effects which furnish the strength of the trailing-edge 
noise are proportional to the square of the jet velocity. The trailing-edge noise is thus 
an order of magnitude smaller than that from the leading edge. 

The issue of satisfying the Kutta condition a t  the supersonic trailing edge does not 
arise because the flow there is always regular, which makes i t  unnecessary to impose 
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an eigensolution to the forced solution, as must be done for subsonic aerofoils (see, 
for example, Jones 1972 ; Crighton 1972,1981,1985). In  potential theory for subsonic 
aerofoils, vortex shedding from a sharp trailing edge and energy exchange between 
acoustic waves and vortices is essential, because the solution to the inviscid forcing 
problem in that case is continuous but singular a t  the trailing edge. To satisfy the 
Kutta condition which requires finite behaviour a t  the sharp edge, a constant 
multiple of an eigensolution, also singular at the trailing edge, must be added to the 
forced solution. The multiplying constant can be chosen such that the singularity in 
the forced solution is exactly offset by that in the eigensolution. As a result, the 
solution becomes unique and regular, but the property of continuity is sacrificed, 
which indicates the formation of a vortex sheet. In  the case of supersonic aerofoils, 
however, no such sacrifice is needed because the solution to the forcing problem is 
itself both continuous and regular. Of course, eigensolutions still exist for the 
supersonic problem, but none of them are physically acceptable. In this case, adding 
a constant multiple of an eigensolution to the forced solution yields a result that is 
discontinuous, singular and not unique, because there is now no criterion for the 
determination of the multiplying constant, unless it is chosen to be identically zero. 
Thus, the only acceptable solution is the forced solution itself. 

The author would like to thank Professor J. E. Ffowcs Williams for many helpful 
discussions and comments. 

Appendix 
In this Appendix, the pressure fluctuations induced by a semi-infinite aerofoil 

cutting through a steady jet are derived in terms of an inverse Fourier transform. To 
distinguish from the case of finite-chord aerofoils, the pressure perturbation here is 
denoted by the capital letter P ( x ,  t ) ,  which also satisfies the wave equation 

The Fourier transform of this equation yields the solution 

p(ka, k,, w )  = A(ka, w )  eiY53, (A 1 )  

which complies with the radiation condition a t  infinity if y is chosen according to 
(2.4), where A is a constant to be determined from the boundary condition on the 
plane z3 = 0. 

In the present case of a semi-infinite aerofoil, it is convenient to specify the 
boundary condition in terms of the induced velocity fluctuations in the x3 direction : 

UoH(a2-x~)H(cMt-x,) .  (A 2) 

This follows from the fact that the induced velocity vanishes ahead of the aerofoil, 
because no disturbance can travel faster than the supersonic leading edge, while on 
the aerofoil surface it also vanishes except in the region covered by the jet flow, in 
which it must be opposite to the jet velocity to comply with the boundary condition 
that the total normal velocity is zero. The Fourier transform of (A 2) can be found 
to be 

27ciau0 J,(aA) -- 
w A .  
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The velocity perturbation is related to the pressure fluctuations by the linear 
momentum equation which leads to the boundary condition for 

J l W  - = - 27cp, au, - 
afi 
ax3 h 

The constant A in the result (A 1 )  can be determined from this, and the inverse 
Fourier transform gives 

from which the result (2.5) quoted in $2 follows immediately by setting x3 = 0. 
With y defined by (2.4), it  is necessary, when calculating the integrals in (A 3) in 

the complex wavenumber-frequency space, to choose the proper branch with branch 
cuts emanating from the two singular points determined by y = 0. In  doing so, both 
the radiation and the causality condition must be satisfied; the former requires the 
path of integration in the wavenumber plane, the k, plane for example, to be. above 
any singularities in the left half-plane where the real part of k,,  Re(k,), is negative, 
and below all in the region where Re ( k , )  is positive. The causality condition, on the 
other hand, is met by chosing the path of integration in the frequency plane such that 
it runs above all the singularities (Morse & Feshbach 1953). From (A 3), it is also clear 
that the contour for the non-zero contribution to the k, integral must be closed by 
the semicircle at infinity in the lower haif-plane so that the exponential factor in 
(A 3) gives a vanishingly small contribution on this semicircle. When the contour 
is closed in the upper half-plane, the integral is zero and corresponds trivially to the 
pressure fluctuation at x before the first wave generated arrives. 

It should also be noted that the choice of the branch cuts is not completely 
arbitrary ; whether the cuts should go to infinity or should join together a t  a finite 
point depends on whether infinity is a singular point. Take k,  and k,  for example. 
From the definition (2.4), we have 

?+ilk11 as Ik11+a, 
y+Mk, as { k , ] + a .  

Thus, infinity is a singular point in the k ,  plane but is not in the k, plane. The cuts 
in the k ,  plane must then be drawn from the two branch points to infinity with the 
path of integration running between them, a choice required to meet the radiation 
condition, while that in the k,  plane should join the two branch points so that the 
path of interaction is above both of them, as is consistent with the casuality 
condition. 
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